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ABSTRACT Mesenchymal stromal cells (MSCs) are adult multipotent stem cells residing as pericytes in various tissues and organs where they

can differentiate into specialized cells to replace dying cells and damaged tissues. These cells are commonly found at injury sites

and in tumors that are known to behave like “wounds that do not heal.” In this article, we discuss the mechanisms of MSCs in

migrating, homing, and repairing injured tissues. We also review a number of reports showing that tumor microenvironment

triggers plasticity mechanisms in MSCs to induce malignant neoplastic tissue formation, maintenance, and chemoresistance, as

well as tumor growth. The antitumor properties and therapeutic potential of MSCs are also discussed.
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Introduction

Mesenchymal  stromal  cells  (MSCs)  are  immature,  adherent

stromal cells residing in various tissues and organs, including

bone  marrow  (BM-MSCs),  adipose  tissue  (AT-MSCs),

umbilical  cord  blood,  and  placenta.  The  presence  of

circulating  MSCs  in  the  peripheral  blood  is  still  debated1,2.

MSCs  divide  into  daughter  cells  that  share  the  same

properties  of  their  mother cell  (self-renewal)  or differentiate

into  specialized  cells  to  replace  dying  cells  and  repair

damaged tissues (multilineage differentiation). Notably, these

adult stem cells can differentiate into various cell types of the

mesodermal  lineage,  including  chondrocytes,  osteoblasts,

adipocytes, endothelial cells,  and myocytes3;  moreover, non-

mesodermal differentiation into neural, liver, pancreatic, and

gastric cells has been reported in vitro, but this phenomenon

occurring  in  vivo  has  not  been  proven4-7.  MSCs  express

membrane  CD90,  CD73,  and  CD105,  and  are  negative  for

CD45, CD34, CD31, CD14, CD19, and HLA-DR3,8.

Emerging  data  suggest  that  MSCs  can  promote

tumorigenic processes, including malignant transformation,

establishment and maintenance of cancer cells, promotion of

angiogenesis and neovascularization-sustaining neoplastic

tissues,  metastasis  formation,  and  chemoresistance  to

anticancer drugs9-11. MSCs have the capability to contribute

to  the  formation  of  cancer  stem  cell  niche  and  support

stemness9-11. In this article, we provide an overview on the

MSC properties that drive their tissue repair capability, such

as  migration,  adhesion,  differentiation,  growth  factor

production, and immune regulation. Then, we discuss how

the same features may boost tumor development and favor

chemoresistance mediated by the tumor microenvironment.

MSCs, regenerative medicine, and
cell therapy

Therapeutic potential of embryonic and adult
stem cells

Tissue or organ transplantation is still associated with various

issues, including inadequate donor availability, compatibility

between donors and recipients, and risk of developing graft-

related complications. Stem cell transplantation has emerged
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as  a  promising  strategy  to  replace  or  improve  organ

transplantation12,13.  The  premise  is  that  stem  cells,  once

administered  to  the  recipient  with  organ  failure,  migrate  to

the  damaged sites  and differentiate  into  the  specific  affected

cell types to restore/replace damaged tissues and rescue organ

functions.  Stem  cells  can  be  classified  as  embryonic  stem

cells,  which give rise  to all  tissue types,  and adult  stem cells,

which  are  involved  in  the  tissue  homeostasis  by  replacing

senescent  or  damaged  cells  based  on  their  differentiation

potency and developmental hierarchy. The high proliferation

rate  and  pluripotency  of  embryonic  stem  cells,  that  is,  the

ability to differentiate into virtually all cell types of the three

germinal  layers  (ectoderm,  mesoderm,  and  endoderm),

would make them the optimal model  for tissue engineering,

regardless of their potential immunogenicity. However, their

therapeutic  use  is  entangled  with  critical  ethical  issues  and

uncontrolled proliferation, leading to teratoma formation in

vivo;  moreover,  the  latter  issue  remains  unsolved  even  with

the  use  of  alternative  technologies  aimed  at  achieving

embryonic  stem  cell-like  cells,  such  as  induced  pluripotent

stem  cells14,15.  Consequently,  adult  stem  cells  have  rapidly

become  the  main  tool  in  regenerative  medicine  and  tissue

engineering  because  of  their  high  proliferative  and

differentiation  properties,  easy  collection,  and  weak  im-

munogenicity16-20.

MSC therapeutic potential

MSC use is  a first  attempt in adult stem cells-based therapy.

A  body  of  evidence  from  in  vivo  and  in  vitro  studies  shows

that  MSCs  possess  regenerative  potential  associated  to  their

adhesion,  migration,  proliferation,  differentiation,  and

immunosuppression properties21-24. This adult stem cell type

is highly used in preclinical studies and phase 2 and 3 clinical

trials  aimed  at  mitigating  graft-versus-host  disease  (GvHD)

and  at  regenerating  damaged  tissues  in  many  diseases  and

conditions  that  are  thought  to  originate  from  deleterious

damages  to  tissues16,25.  Examples  include  the  attempts  to

regenerate bone, heart, muscle, and nervous tissues following

tissue  injury  from  inflammation-  and  oxidative  stress-

associated  pathogenic  processes26,27.  Tissue  repair  and

attenuation of chronic or acute inflammation were observed

after  local  or  systemic  infusion  of  MSC  in  patients16,25.

However,  the  real  clinical  impact  of  this  cell  therapy

approach remains unknown and requires further multicenter

studies  based  on  standardized  methods  to  assess  safety  and

efficacy.

MSCs have been well characterized with respect to their

ability to produce a range of growth factors and cytokines,

which inspired the designation of these cells as an “injury

drugstore”28.  Notably,  MSC secretome screening revealed

numerous growth factors that potentially contribute to tissue

repair, such as (i) vascular endothelial growth factor (VEGF),

which  has  angiogenic  abilities  and  triggers  endothelial

differentiation  in  MSCs  through  VEGFR-2/Sox1829  and

Rho/myocardin-related  transcription  factor-dependent

mechanisms, thereby promoting blood vessel repair30,31; (ii)

hepatocyte growth factor (HGF) that may play a role in MSC

regenerative  effects  on  the  liver,  as  it  promotes  the

differentiation and proliferation of  hepatic-like  cells  and

induces MSC-associated cytoprotective effects on hepatocytes

in vivo32-34; (iii) transforming growth factor-beta (TGF-β),

whose  involvement  was  reported  in  MSC-mediated

heart  repair,  where  it  stimulated  the  differentiation  of

cardiomyocytes  and  promoted  angiogenesis35 ;  (iv)

angiopoietin-1, another pro-angiogenic factor involved in

MSC-mediated improvement of cardiac function (36) and

skin  damage37;  (v)  epidermal  growth  factor  (EGF)  that

mediates MSC-associated protection of podocytes from high

glucose-induced apoptosis38;  (vi)  platelet-derived growth

factor (PDGF), whose release by MSCs was reported to play a

role in cardiac healing after myocardial injury by exerting a

pro-migratory effect on resident cardiac stem cells39;  (vii)

granulocyte-colony  stimulating  factor  (G-CSF),  whose

release by MSCs is  triggered by co-cultures with counter-

inflammatory or tissue repair macrophages, enhanced by the

MSC  cartilage-forming  capacity40;  and  (viii)  fibroblast

growth factor (FGF), and cytoprotective factors that partly

account for the therapeutic effects of MSCs in lung diseases41.

Numerous other soluble factors are released by MSCs and

contribute to the properties of these cells, including stem cell

factor, MCP-3, CXCL8, CXCL9, CXCL16, CCL20, CCL25,

IL-6, and IL-1242-45.

MSC properties contributing to tissue repair
ability

Migration and homing
Determinant  factors  of  cell  therapeutic  potential  include

migration, homing, and survival when administered through

a  specific  route.  Labeling  and  tracking  of  MSCs  have  been

employed  to  understand  the  MSC  distribution  in  the  body

following  local  or  systemic  injection.  Reported  labeling

approaches include intracellular magnetic contrast materials,

radioactive  compound,  and  fluorescent  dyes46-48;  and

expression  systems,  such  as  luciferase,  green  fluorescent

protein (GFP), and Alu sequences48-52. Studies addressing the

final location of MSCs after systemic infusion in disease-free

130 Nwabo Kamdje et al. MSC homing and tumor modulation



laboratory animals revealed that injected MSCs could localize

in  diverse  sites  of  organs,  such  as  the  lung,  liver,  and

spleen53,54.  Interestingly,  comparable studies in animals with

damaged  organs  revealed  a  tropism  of  injected  MSCs  for

damaged  sites,  particularly  following  administration  at

neighboring  areas.  For  instance,  Barbash  and  colleagues54

reported  that  99mTc-exametazime-labeled  MSCs  infused  in

the left ventricle cavity, instead of intravenously, resulted in a

drastically  reduced  lung  uptake  and  increased  infarcted

myocardium  uptake  in  a  rat  model.  Comparably,  after

palatine  tonsil  MSCs  (T-MSCs)  were  intravenously

administered  to  carbon  tetrachloride-induced  mouse  model

of  liver  fibrosis,  the  T-MSCs  were  only  found  in  the  liver55.

Intravenously  injected  MSCs  migrated,  distributed  to  the

colon, and effectively mitigated disease severity indicators in

a  rat  model  of  ulcerative  colitis  via  an  anti-inflammatory

effect  partly  mediated  by  G-CSF56.  Moreover,  nasal  mucosa

ecto-mesenchymal  stromal  cells  injected  in  the  tail  vein

migrated  to  the  inflammation  sites  and  suppressed

eosinophils and sneezing in a mouse model of allergic rhinitis

via  downregulation  of  Th-2  cell  secretory  activity,  that  is,

decreases  in  IgE,  IL-4,  IL-5,  and  IL-10  secretions;  and

upregulation  of  Th-1  cell  secretion,  including  the  release  of

IgG2  and  IFN-γ57.  Interestingly,  MSC  delivery  into  the

arterial  system  via  injection  into  the  aortic  arch  or  tail  vein

supports  the  “first-pass”  cell  delivery  hypothesis.  Indeed,

MSCs  showed  significant  entrapment  in  the  lungs  when

delivered  intravenously  into  the  tail  vein.  However,  when

delivered  intra-arterially  through  the  aortic  arch,  the  cells

were  highly  and  evenly  distributed  in  the  entire  animal45.

MSCs  were  reported  to  home  at  the  sites  of  ischemia,

hypoxia,  inflammation,  and  other  injuries54,55,58.  Overall,

such  sites  have  high  concentrations  of  pro-inflammatory

cytokines,  chemokines,  and  soluble  factors  that  may  attract

MSCs and favor their homing21,22.

The migration and homing of infused MSCs to damaged

tissues  are  important  parameters  to  consider  for  clinical

purposes. Failure or poor results following attempts of MSC-

based therapy observed in a significant number of patients

raised at least three concerns. First is their overall viability

following  infusion  via  the  route  used  (local  versus

systemic43); moreover, despite clinical evidence and reports

from experimental models supporting the assumption that

MSC homing may be governed by damaged tissues, MSCs

can still be found in unwanted sites, thereby raising safety

concerns for the long-term effects of MSC-based therapy59,60,

particularly  in  pediatric  patients61-63.  Second  is  the  en-

graftment degree of MSCs in targeted tissues, and the third,

as  a  consequence,  is  the  fate  of  these  cells  if  improperly

engrafted.  Improving  the  MSC  viability  and  therapeutic

potency is currently a challenge. A remarkable example is

provided by MSC-based therapy in lung diseases, where MSC

grafting and homing to affected tissues are successful. This

therapeutic approach has been held back by the difficulty of

engrafted  MSCs  to  survive  more  than  one  week  after-

transplantation  in  hostile  microenvironments41.  Similar

observations have been reported in other injuries, including

renal  ischemia/reperfusion  injury,  where  hypoxia

preconditioning of MSCs appeared as a possible solution64.

Hypoxia  induces  the  secretion  of  anti-inflammatory,

antiapoptotic,  and  anti-fibrotic  factors,  as  well  as  the

expression of cytoprotective genes, thereby enhancing the

therapeutic potential and survival duration of the engrafted

MSCs41,64. Recently, a study in human umbilical cord MSCs

suggested the three-dimensional spheroid culture of these

stem cells as a strategy to promote cell yield and stemness

maintenance65.

Moreover, functional differences were reported in MSCs

from  human  dental  pulp  and  periodontal  ligaments66,

indicating that MSCs from topographically related tissues do

not  necessarily  share  identical  properties,  thereby

emphasizing  the  need  for  comparing  the  multipotency,

immunosuppression  properties ,  response  to  pro-

inflammatory  cytokines,  and eventually  the  secretome of

MSCs from diverse sources before clinical use. Reports in

various  human  studies21,22  and  animal  models23,24  cor-

roborated these observations.

Differentiation and transdifferentiation
The differentiation ability of MSCs accounts for their positive

effects  in  diseases  wherein  pathogenic  processes  include

severe tissue damage, such as in cardiac lesions. For instance,

a  promising  observation  in  MSC-mediated  therapy  was  the

finding that injecting MSCs in an infarcted heart generates a

new  tissue  made  up  of  proliferating  myocyte  and  vascular

structures67. In a study with enhanced-GFP-labeled MSC, the

regenerated  cardiomyocytes,  vascular  smooth  muscle,  and

endothelial  cells  were  EGFP+,  suggesting  that  the  new heart

tissue  was  mainly  derived  from  MSC  differentiation68.  In  a

study where  the  injection of  GFP-labeled AT-MSC in spinal

cord of a canine model of acute spinal injury was associated

with  a  functional  recovery,  GFP-positive  cells  at  the  injury

site included cells positive for GFAP (astrocyte marker), Tuj-

1,  and  NF160  (markers  of  immature  post-mitotic  neurons),

suggesting that functional improvement was mediated by the

differentiation  of  AT-MSCs  into  functional  astrocytes  and

neurons69.

The plasticity of  MSCs does not derive only from their

Cancer Biol Med Vol 14, No 2 May 2017 131



ability to differentiate into other cell types (cell replacement),

but includes fusion with resident cells, thereby resulting in

the  emergence  of  new  cells  capable  of  tissue-specific

functions. This fusion is termed as lineage reprogramming or

transdifferentiation.  MSC  transdifferentiation  results  in

phenotypes that are highly related to resident cells70,71. Many

studies report  MSC ability to fuse with various cell  types.

Examples  of  such  cell  types  include  cardiomyocytes72,73,

hepatocytes74,75,  neurons,  and  corneal  cells76,77.  The

increasing number of reports suggests that cell fusion is an

alternate and a common and probably pivotal pathway in

MSC plasticity.

Immune modulation
Besides  the  classic  cell  replacement  (differentiation)  and

reprogramming  (transdifferentiation)  paradigms,  immune

modulatory  properties  contribute  to  the  benefits  of  MSC

therapy.  MSCs  may  modulate  immune  responses  using

paracrine  mechanisms  and  cell-cell  interaction.  Studies

suggesting  that  the  activating  properties  in  MSCs  are  scarce

include reports of the ability of MSC to activate allogeneic T-

cells  in  mixed  leukocyte  reaction78,  stimulate  the  activation

and proliferation of resting T-cells in co-cultures79, the MSC

behavior  as  conditional  antigen  presenting  cells  (APCs)  in

syngeneic  immune  responses80,  the  TLR-activated  MSC

ability  to  recruit  and  activate  immune  inflammatory  cells81,

and  the  secretion  of  pro-inflammatory  cytokines  and

chemokines  by  MSCs42,44,45.  However,  the  clinical

implications of these observations are still unclear.

The  immunosuppressive  properties  of  MSCs  are  well

documented.  These  effects  may  emerge  from  cell-cell

interactions with both innate and adaptive immune system

cells82-85,  partly  mediated  by  Toll-like  receptor  (TLR)

pathways, as revealed by the immunosuppression effects of

TLR4 activation (via mechanisms involving VCAM-1- and

ICAM-1-mediated  binding  of  immune  cells)  and  TLR3

activation (via  mechanisms that  induce  the  formation of

cable-like  hyaluronic  acid  structures)86,87.  The  immu-

nosuppressive abilities of MSC can be mediated by the release

of  soluble  factors  with  anti-inflammatory  effects,  like

indoleamine 2, 3-dioxygenase (IDO), inducible nitric oxide

synthase  (iNOS),  prostaglandin  E2  (PGE2),  G-CSF,  and

TGF-β40,56,88-90. Such immunosuppressive effects account for

the ability of MSC to inhibit inflammatory responses that are

induced  by  the  presence  of  transplanted  tissues,  thereby

decreasing the probability of rejection91-95. MSCs prevents

autoimmunity via CCL2-dependent recruitment of myeloid-

derived suppressor cells, in a mouse model of experimental

autoimmune uveitis96.

Clinical  application of MSCs requires a relatively long-

term ex vivo  culture that results in cellular senescence and

reduced  therapeutic  activity  of  transplanted  cells97.

Experimental evidence shows that the therapeutic potency of

MSCs may be enhanced and even restored by improving the

immunosuppressive properties of these cells. For instance, in

a  recent  study,  these  properties  were  improved  by  using

vitamin D receptor agonists as additives in a mouse model of

sterile kidney inflammation98. This approach resulted in the

suppression of Th17 and related inflammatory responses in

the  kidney.  In  another  study,  the  MSC-activating

neuropeptide, termed as substance P, potentiated the ability

to secrete TGF-β1 in long-term culture MSCs, indicating a

recovery of their immunosuppressive function97. Moreover,

these cells recovered their ability to inactivate CD4+ cells in

co-cultures (cell-cell  contact).  Adenoviral transduction of

MSCs  was  proposed  as  a  strategy  for  increasing  the

immunosuppressive properties of engrafted MSCs after cell

transplantation66.  Overall,  because  of  their  immune

modulatory features, MSC are being tested to treat immune

disorders,  such  as  GvHD,  rheumatoid  arthritis,  multiple

sclerosis, type 1 diabetes, and inflammatory bowel disease,

and to enhance transplant tolerance45.

MSCs and tumor microenvironment

MSC plasticity and tumorigenesis

A major role for MSCs in cancer development emerged from

the fact that MSCs are commonly found in stromal niches of

various  tissues  undergoing  tumorigenesis,  including  bone

marrow  in  hematological  malignancies9-11,  and  in  the

affected  ducts  and  lobules  of  breast  cancer99-101.  Moreover,

MSC  research  insights  raised  concerns  about  the  possibility

of their role in all  the developmental and maintenance steps

of  malignant  tumors  from  initiation  until  the  metastatic

spread.  Growing evidence  supports  the  idea  that  MSCs may

exploit  the  properties  related  to  tissue  repair  to  promote

tumorigenesis  and  protect  transforming  cells  from

chemotherapy10,83,102-109.  Therefore,  events  and  mechanisms

accounting for MSC-mediated tissue regeneration and repair,

such  as  MSC  activation,  mobilization,  migration,  and

homing  to  stromal  microenvironment,  differentiation  and

transdifferentiation,  as  well  as  the  secretion  of  cytokines,

growth  factors,  and  other  soluble  factors  modulating  the

local immune responses and improving stromal cell survival,

may  support  the  pro-oncogenic  role  of  MSCs.  Thus,  MSCs

may  eventually  facilitate  cancer  cell  growth,  partly  by

favoring the angiogenic and neovascularization processes that
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allow the survival of malignant neoplastic tissues107-109 and by

modulating anticancer immunity and hijacking immune cells

to  favor  tumor  invasion  and,  subsequently,  metastatic

processes99,103-105,110.  These  findings  have  tempered  the

enthusiasm  over  the  clinical  application  of  stem  cells  and

further  raised  safety  concerns  of  the  long-term  use  of  these

cells  and  which  categories  of  patients  may  be  suitable  for

MSC-based therapies.

Tumor stroma recapitulates damaged tissue
microenvironment

MSC plastic properties generate pro-tumoral
stroma
Tumor  stroma  mainly  include  immune,  endothelial,  and

immune  cells,  such  as  lymphocytes,  macrophages,

neutrophils,  and  natural  killer  cells,  as  well  as  adipocytes,

myofibroblasts,  and  carcinoma  associated  fibroblasts

(CAFs)111.  Among  the  most  abundant  tumor  stroma

components, CAFs considerably boost tumor growth, induce

epithelial-mesenchymal  transition,  promote  the  acquisition

of  invasive  phenotypes,  and  support  angiogenesis112-115.

Moreover,  CAFs  could  induce  epithelial-mesenchymal

transition through paracrine TGF-β signaling115.

Besides, early in vitro studies revealed that, following long

treatments  with tumor cell-conditioned medium in  vitro,

MSCs can differentiate into CAFs116  via a TGFβ1/Smad3-

dependent mechanism117,118. Growing evidence supports the

ability  of  the MSC to differentiate  into CAFs in  vivo.  For

instance, MSCs differentiate into CAFs to promote metastatic

tumors in advanced solid cancers118-124. Moreover, MSCs in

tumors  may  display  transdifferentiation,  wherein  fusion

occurs with resident cells, such as malignant cells and other

components of the tumor stroma, thereby resulting in the re-

modeling of the tissue stroma of the affected organ into a

pro-tumoral  stroma103,107,125-127 .  Examples  of  MSC

transdifferentiation  include  MSC  fusion-induced  re-

programming in lung cancer127, human melanoma107, breast

cancer, and ovarian adenocarcinoma cells126. These reports

further suggested that the plastic role of  MSCs is  a major

pathogenic step because it  drives the generation of a pro-

tumoral stroma.

Homing: MSCs exhibit tropism for tumors
Tumors  behave  like  “wounds  that  do  not  heal”,  and

recapitulate  most  of  the  characteristic  events  of  damaged

tissue  (wounding)  microenvironment,  such  as  hypoxia,

mechanical  stress,  sustained  inflammation,  and  increased

oxidative/nitrosative  stress50,111.  Numerous  studies  reported

tumor microenvironment tropisms of  both endogenous and

exogenous  MSCs.  For  instance,  in  a  study  where  MSCs

labeled  with  firefly  luciferase-enhanced  GFP  (fLuc-eGFP)

reporter  gene  were  intravenously  injected  to  subcutaneous

and  lung  metastasis  mouse  models,  the  injected  MSCs

survived,  proliferated,  and  differentiated  in  tumor  sites  but

not anywhere else50, thereby suggesting that exogenous MSCs

are disease responsive.

Various soluble molecules have been reported to play a

role in the mobilization or recruitment of MSCs to tumor

sites; however, the major players are the immunoregulatory

cytokine TGF-β40,56,88-90, stromal cell-derived factor 1, also

known  as  C-X-C  motif  chemokine  12  (CXCL12),  and

CXCR4, its receptor that is abundantly secreted by tumor

cells118,121-124,128.  Specifically,  experimental  evidence  has

established  the  CXCL12/CXCR4  pathway  as  a  pivotal

pathway for MSC and malignant cell migration and homing.

Examples include reports suggesting the following: (i) MSC

tumor tropism is mediated by matrix metalloproteinase-1 via

a mechanism dependent on cross-talk with CXCL12/CXCR4

axis129  (129);  (ii)  CXCL12 is  abundantly released by BM-

MSCs and drives the homing of leukemic cells in the bone

marrow  stroma  in  pediatric  precursor  B-cell  acute

lymphoblastic leukemia130; and (iii) CXCL12/CXCR4 signals

the silencing results in the inhibition of MSC migration to

the primary tumor and metastasis sites in solid cancers, such

as breast carcinoma119,120.

MSC paracrine activity controls stromal
component production and immune response
MSCs  and  derived  tumorigenesis-favoring  cells,  such  as

CAFs,  control  the  production  of  stromal  components  and

may  sustain  the  maintenance  of  cancer  cells10,11,99.  For

instance,  MSCs  regulate  chemotaxis,  activation,  function,

and  survival  of  neutrophils  via  an  IL-6-STAT3-ERK1/2

signaling  cascade  in  gastric  cancer  and  related  solid

cancers99,131.  These  MSC-primed  neutrophils  promote  the

differentiation  of  normal  MSCs  into  CAFs131.  Furthermore,

MSCs  promote  angiogenic  processes  that  result  in  blood

vessels  sustaining  neoplastic  tissue  through  its  paracrine

activity.  The  proangiogenic  molecules  released  include  IL-6,

endotheline-1, VEGF, and FGF4132,133.

Unlike injured sites where tissue repair is promoted84-87,133

and in organ transplant  settings  where  the  probability  of

rejection of transplant tissues is  decreased94,95,103,  the im-

munosuppressive  action  of  MSCs  may  result  in  the

suppression of cancer immunity in tumors, enabling cancer

cells to escape immune surveillance. As observed in tissue

repair  processes,  MSCs  can  influence  almost  all  the
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components  of  the  immune  system  to  attenuate

inflammation and control immune response by interfering

with various immune phenomena, such as cytokine secretion

and the cytotoxicity of T- and NK cells, B-cell maturation

and antibody secretion, and APC maturation, activation, and

function102,134,135.  Moreover,  the  MSC-mediated  im-

munosuppression in the tumor stroma is partly triggered via

paracrine  activity.  Immunosuppressive  properties  appear

when MSCs and CAFS are involved in cell-cell interaction

with  immune  cells,  released  by  the  anti-inflammatory

cytokine  TGF-β,  or  are  stimulated  by  proinflammatory

cytokines, such as TNF-α and IFN-γ40,56,88-90. For example,

the in vitro immunosuppressive properties of MSCs towards

NK, T, and B cells are triggered by the stimulation of MSCs

in TNF-α  and IFN-γ  treatments. Such stimulation enables

MSCs to produce molecules, such as PGE2, iNOS (mouse),

or IDO (human)96-98. Notably, some of these products (that

is,  chemokines and PGE2) can attract immune cells136-138,

whereas  others  (that  is ,  iNOS  and  IDO)  induce

immunosuppression40,56,88-90.

Moreover, damaged tissues and tumor microenvironments

are  rich  in  soluble  factors  belonging  to  the  secretome of

MSCs that can favor tumorigenic processes, such as IL-1, IL-

17, IL6, IFN-γ, TNF-α, Wnt, and Jagged135,36,39-41,139. These

factors  can  induce  profound  changes  in  the  capacity  for

MSC,  drive  its  differentiation  into  CAFs111,114,115,  and

produce  growth  factors29,35,39  and  angiogenic112,115  and

metastatic cytokines118-121. These findings suggest that MSCs

may  participate  in  the  pathogenic  vicious  cycle  wherein

tumor cells modify stromal cells, and in turn, MSCs promote

malignant cell maintenance and tumor growth via plastic and

biochemical changes in the tumor microenvironment (Figure1).

MSC homing to tumors: pro- or
antitumor action?

Discrepancies in antitumor and tumor-
promoting roles of homing MSCs

Conflicting  data  and  concepts  about  antitumor  and  tumor-

promoting  roles  of  MSCs  have  been  reported.  Most  reports

suggest the tumor-promoting roles of MSCs. Gastric cancer-

derived MSCs can prompt gastric cancer progression through

secretion  of  CXCL8140  and  PDGF141.  In  another  recent

report,  BM-MSCs  protected  primary  B  cell  precursor  acute

lymphoblastic  leukemia  cells  from  p53  accumulation  and

subsequent  apoptotic  cell  death  via  a  PGE2-dependent

mechanism142,  suggesting  that  MSCs  protect  cancer  cells

from external  aggression and confer  chemoresistance10,83,102.

Cross-talk between MSCs and tumor cells allows the latter to

escape  from  apoptosis  induced  by  chemotherapy  drugs,

suggesting that an enhanced understanding of such cross-talk

could  reveal  improved  targets  for  progressing  classical

therapies.  Evidence-based  reported  mechanisms  accounting

for the protective interaction between MSCs and tumor cells

include  the  activation  of  developmental  pathways,  such  as

Wnt,  notch,  sonic  hedgehog,  TGF-β,  and  MAPK83,102-105,  as

well as cell adhesion and growth factors10,107-109,143. Inhibiting

these  factors  improves  treatments  using  classical  che-

motherapy  agents.  When  MSCs  were  cultured  with  B-ALL

and  CLL  cells  in  presence  of  notch-blocking  antibodies  or

pan  notch  inhibitors,  like  gamma-secretase  inhibitors,  the

resistant  leukemic  cells  were  sensitized  to  drug-induced

apoptosis,  even  in  the  presence  of  MSCs83,102.  Similarly,  the

inhibition  of  hedgehog144  or  Wnt103  signaling  on  MSCs

enhanced  the  sensibility  of  tumors  to  classical  chemo-

therapies.

The anticancer properties of MSCs have been reported,

particularly the attractive MSC potential for gene or drug

delivery in cancer therapy that has emerged from the cancer

tropism of these cells145,146. For instance, targeted inhibition

of osteosarcoma tumor growth by BM-MSCs expressing the

suicide  gene  therapy  system  cytosine  deaminase/5-

fluorocytosine  was  reported  in  tumor-bearing  mice145.

Human AT-MSCs inhibited human melanoma cell growth in

a conditioned medium, and a reduction in tumor size was

observed in athymic mice when MSCs were injected in the

tissues  surrounding  the  tumor147.  The  antitumor  role  of

MSCs  was  suggested  by  studies  aimed  at  developing  a

traceable therapeutic strategy for treating breast cancer using

MSCs148,149.

MSCs  can  induce  cancer  cell  survival,  stemness,  and

chemoresistance by differentiating into cancer-associated

fibroblasts  (CAFs)  using  a  tumor  growth  factor  β  type  1

(TGFβ1)-dependent mechanism, and by releasing soluble

factors that favor angiogenesis and immunosuppression in

the  tumor  microenvironment,  such  as  prostaglandin  E2

(PGE2)  and  vascular  endothelial  growth  factor  (VEGF).

MSCs can mediate anti-cancer effects by releasing anti-cancer

factors,  such  as  tumor  necrosis  factor-related  apoptosis-

inducing ligand (TRAIL), via mechanisms that are not well

understood.

Factors accounting for MSC ability to play
both tumorigenic and anti-tumorigenic roles

Factors accounting for the ability of MSCs to play both pro-

and  anti-tumorigenic  roles  in  tumor  microenvironment  are
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complex.  These  factors  include  MSC  source,  secretome,

nature  of  interactions  with  cancer  and  host  immune  cells,

type of cancer and cancer cell lines, and specific in vivo or in

vitro  condition7,146,150,151.  Notably,  MSC-secreted  tumor

necrosis  factor-related  apoptosis-inducing  ligand  (TRAIL)

was  reported  as  a  major  promoter  of  MSC  pro-apoptotic

properties on tumor cells150,151, but its expression patterns in

MSCs  and  cancer  models  has  not  been  extensively

investigated146. Consequently, data on the precise conditions

of release of TRAIL and, thus, on the therapeutic relevance of

the  release  induction  by  MSCs  in  tumors,  are  poorly

understood,  despite  recent  reports  suggesting  that  MSC-

released  TRAIL  promotes  apoptosis  even  in  resistant  solid

cancer cells150,151.

Moreover, concerning the origin of MSCs, several studies

have been designed involving MSCs originating from healthy

donors and are functionally different from cancer patients’

MSCs  that  have  undergone  deep  cellular  and  molecular

changes in the tumor stroma, following direct interaction

with tumor cells111,114,115 or exposure to soluble molecules

secreted by the microenvironment112-115,121. Consequently,

MSCs  from  tumors  could  promote  cancer  progression

mainly  by  secreting  soluble  factors  and  increasing  the

number of cancer-promoting stem cells  in the tumor mi-

croenvironment152-154.  Moreover,  short-term memory  of

environmental  stimuli  and  danger  signals  were  recently

reported in MSCs7,  thereby increasing the complexity for

predicting MSC responses in a specific environment.

Finally,  discrepancies  in  available  data  emerged  from

changes in MSC properties when moving from in vitro to in

vivo contexts155. Moreover, in a number of studies, cellular

events  that  are  considered  as  unequivocal  indicators  of

antitumor or  tumor promoting effect  are  insufficient  for

such conclusion. For instance, co-culture of leukemic cells

with  MSCs  can  induce  growth  arrest  of  leukemic  cells;

however, this cannot be always considered as an anticancer

effect  because  cell  quiescence is  a  well-known strategy of

leukemic  stem  cells  that  allow  them  to  escape  from

chemotherapeutic agents that target rapidly dividing cells156.

Conclusions

The multipotency and the ability of  MSCs to secrete soluble

factors  that  induce  immunosuppression  and  favoring

angiogenesis  confer  to  these  stem  cells  the  ability  to  repair

injured tissues. The specific tropism of these cells allows them

to migrate and home into injured tissues to repair them and

induce  immunosuppression,  resulting  in  the  prevention  of

transplant-related  immunity.  These  properties  are  the  basis

for  the  large  use  of  MSCs  in  regenerative  medicine,  tissue

engineering,  and  organ  transplantation.  However,  clinical

and  experimental  bodies  of  evidence  show  that  MSCs  are

chemically  attracted  by  tumors.  In  this  context,  the  plastic

properties  of  MSCs  favor  tumorigenesis;  as  soluble  factors,

 
Figure 1   MSC role in tumor microenvironment. MSCs can induce cancer cell survival, stemness, and chemoresistance by differentiating

into cancer-associated fibroblasts (CAFs) using a tumor growth factor β type 1 (TGFβ1)-dependent mechanism, and by releasing soluble

factors that favor angiogenesis and immunosuppression in the tumor microenvironment, such as prostaglandin E2 (PGE2) and vascular

endothelial growth factor (VEGF). MSCs can mediate anti-cancer effects by releasing anti-cancer factors, such as tumor necrosis factor-

related apoptosis inducing ligand (TRAIL), via mechanisms that are not well understood.
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they  favor  cancer  cell  maintenance,  proliferation,  che-

moresistance,  and suppress anticancer immunity.  Moreover,

MSC  fusion  with  cancer  cells  and  the  tumor  micro-

environment  drive  MSC  differentiation  into  CAFs,  thereby

favoring  tumorigenesis  and  soluble  factor  release.  Never-

theless,  many  studies  showed  that  MSCs  release  potent

anticancer  molecules  in  the  tumor  microenvironment.

Characterization of the mechanisms that drive the release of

such molecules  may give  the  cue  for  anticancer  strategies  to

re-sensitize  and  induce  apoptosis  in  previously  chemo-

resistant cancer cells.
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